Use of Satellites to Examine Cyanobacteria in California's Large Waterbodies

Randy Turner
San Francisco Estuary Institute

SWAMP contract with SFEI

Process, analyze and report on satellite imagery provided by NOAA to protect public health from cyanobacterial Harmful Algal Blooms (cyanoHABs)

Contract with SWAMP

- Develop infrastructure for processing satellite imagery
- Historic Data
 - Analyze data from MERIS satellite (2002-2012)
 - Status and Trends report on cyanoHABs in large lakes
- New Data
 - Analyze data from OLCI on Sentinel-3 satellite (launched 2/16)
- Reporting
 - Create web portal for viewing imagery and related data
 - Inform waterbody managers when bloom conditions occur
 - Issue regular bulletins and newsletters to public

Satellite Basics

- Flyover every few days
 - Swath 1,150 km wide
 - Resolution is 300m x 300m (per pixel)
 - Satellite analyzes light absorption signature in each pixel
 - Shape in key spectral bands
 - Estimate concentration (N) for each pixel:
 - Cyanobacteria
 - Non-cyanobacteria
 - All algae

Satellite Basics

- Each pixel assigned a value of N (1-249)
- Wind, clouds, etc. impact blooms
- Generate 10 day max composite

Data Processing

 Review all scenes for previous 10 days

Data Processing

- Review all scenes for previous 10 days
- Determine maximum value for each pixel location

Data Processing

- Review all scenes for previous 10 days
- Determine maximum value for each pixel location
- Generate 10 day max composites

7/6/2009

Generate Statistics

- From each 10 day max composite, generate waterbody-wide estimates for:
 - Mean
 - Median
 - 90th percentile of max
- For each 'portion' of bloom:
 - Cyano / Non-Cyano / Total
- Convert N to:
 - Cyanobacterial Index (CI)
 - Chlorophyll-a (ug/L)
 - Microcystis sp. (cells/mL)
- Where composites are:
 - >17 pixels (NOAA recommended)
 - >0 pixels

Generate Statistics

- From each 10 day max composite, generate waterbody-wide estimates for:
 - Mean
 - Median
 - 90th percentile of max
- For each 'portion' of bloom:
 - Cyano / Non-Cyano / Total
- NOAA derived algorithms to convert N to:
 - Cyanobacterial Index (CI)
 - Chlorophyll-a (ug/L)
 - Microcystis sp. (cells/mL)
- Where composites:
 - >17 pixels (NOAA recommended)
 - >0 pixels

			Cyano	Cyano	Cyano	
				Mean	Median	90th %
				>17	>17	>17
2	start_date	end_date	Pixels	MC (cells/mL)	MC (cells/mL)	MC (cells/mL)
_	6/22/2009	7/1/2009	1757	109,648	131,826	1,995,262
	6/23/2009	7/2/2009	1779	123,027	154,882	1,949,845
	6/24/2009	7/3/2009	1739	109,648	134,896	1,949,845
	6/25/2009	7/4/2009	1739	109,648	134,896	1,949,845
	6/26/2009	7/5/2009	1721	134,896	181,970	1,778,279
	6/27/2009	7/6/2009	1709	125,893	186,209	1,548,817
	6/28/2009	7/7/2009	1709	125,893	186,209	1,548,817
	6/29/2009	7/8/2009	1733	134,896	194,984	1,584,893
	6/30/2009	7/9/2009	1721	125,893	186,209	1,621,810

Cuana

Cyano

10 Day Max Composite 6/30/09 - 7/9/09

Generate 81 columns of data for each day for each waterbody!

Waterbodies in RB2 with MERIS Coverage

Future Data

- OLCI/Sentinel-3 satellite
- Download and analyze new data regularly
- Communicate data to guide event response monitoring by:
 - Waterbody managers
 - County public health officials
 - Regional Board/SWAMP
- Publish:
 - Bi-weekly bulletins
 - Quarterly newsletter
 - Web maps and data

Need contact information

Interactive Maps for MyWaterQuality Portal

- DRAFT mock-ups of what interactive maps may look like
- Posted Waterbody map
- Satellite Data map

Early Review of Historic Satellite Data for Calaveras Reservoir

All data preliminary Please do not cite

Daily Pixel Counts

>18 pixels=Green, 1 to 17 pixels=Yellow, No Data=Red Calaveras Reservoir Lake Chabot

New CA Thresholds for HABs

- Thresholds mostly toxin related
- Cell density of 4,000 cells/mL only for lowest 'Action Level'
- Background levels for satellite data 10,000 cells/mL

	Action Trigger	Warning TIER 1	Danger TIER 2
Primary Thresholds ^a			
Total Microcystins ^b	0.8 μg/L	6 μg/L	20 μg/L
Anatoxin-a	Detection ^c	20 μg/L	90 μg/L
Cylindrospermopsin	1 μg/L	4 μg/L	12 μg/L
Secondary Thresholds			
Cell Density (Toxin producing cells)	4,000 cells/mL		
Site Specific Indicators of Cyanobacteria	Blooms, scums, mats		

Satellites- What They Can't Do

- Cyano blooms can be detected...but...
 - Clouds block images
 - Less confidence with lowest algal densities
 - False positives can occur
 - All cyanobacteria (including non-toxin producers)
 - Doesn't measure toxin levels
 - Screening tool- No direct comparisons to HAB thresholds
 - Limited to large lakes (currently)

Satellites- What They Can Do

- Cyano blooms can be detected and...
 - Historic- Provide understanding of bloom conditions during 2002-2012
 - Identify trends and severity of blooms
 - Future- Provide bloom status and location in near-real time
 - Inform waterbody managers of bloom conditions from initiation through senescence
 - Better target event response monitoring to protect public health
 - Complement data collected by water managers
 - Hundreds of waterbodies in CA monitored at once

Further Research Needed

- Satellite data will be available to public
- Compare to:
 - Water quality
 - Weather
 - Inflow/lake levels
 - Geology
 - Etc.

NOVA Satellite Episode

- 'Earth From Space'
 - Great intro to how much we can learn from satellites

Questions?

